

Chemistry A

Advanced GCE A2 H434

Advanced Subsidiary GCE AS H034

Mark Schemes for the Units

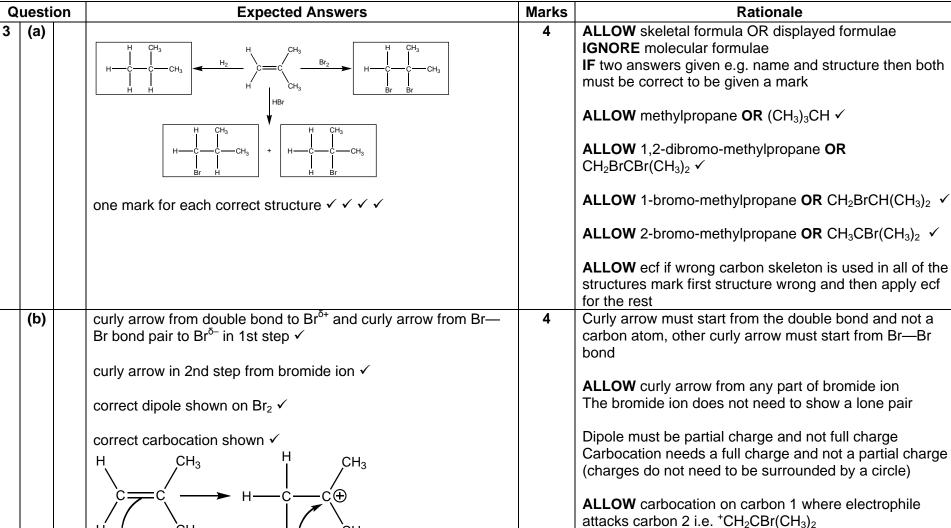
June 2009

H034/H434/MS/R/09

F322 Chains, Energy and Resources

Q	uesti	on	Expected Answers	Marks	Additional Guidance
1	(a)		$C_nH_{2n+2} \checkmark$	1	ALLOW $C_n H_{2(n+1)} \checkmark$
					IGNORE size of subscripts
	(b)	(i)	$C_8H_{18} + 8\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O \checkmark$	1	ALLOW any correct multiples
					IGNORE state symbols
		(ii)	limited supply of air OR not enough $O_2 \checkmark$	1	ALLOW use of air or oxygen
					IGNORE it is not completely oxidised
	(c)	(i)	$2CO + 2NO \rightarrow 2CO_2 + N_2 \checkmark$	1	ALLOW any correct multiples including fractions
					IGNORE state symbols
	(c)	(ii)	CO and NO are adsorbed (onto surface) OR reactants are adsorbed (onto surface) ✓	3	ALLOW CO and NO stick onto surface OR CO and NO form weak attractions to the surface OR gases are adsorbed onto surface NOT absorb but allow ecf for deabsorb later on
			weakening of bonds OR lowers activation energy ✓		IGNORE alternative pathway Requires less energy is not sufficient
			CO ₂ and N ₂ desorbs (from the surface) OR products desorbs (from the surface) \checkmark		ALLOW products leave the surface OR products diffuse away from surface OR weak attraction to surface is broken ALLOW deadsorb
	(d)		skeletal formula of a branched isomer of C_8H_{18} \checkmark	2	ALLOW any ring between C and C with 0 earbon stores
			skeletal formula of a cyclic hydrocarbon OR skeletal formula of substituted arene of $C_8H_{10}\checkmark$		ALLOW any ring between C_3 and C_8 with 8 carbon atoms per molecule
					IGNORE wrong names
					If two correct structural or displayed formulae drawn award one mark

ΡN	1T


Mark Scheme	
-------------	--

Question	Expected Answers	Marks	Additional Guidance
(e)	Any TWO from: atmospheric concentration ✓	2	ALLOW the amount of the gas OR abundance of gas
	ability to absorb infrared radiation ✓		ALLOW how much IR it absorbs OR ability to absorb heat IGNORE global warming potential / heat reflected / how much is produced
	residence time ✓		ALLOW how long it stays in the atmosphere
	Any TWO from: deep in the oceans OR on the sea-bed \checkmark	2	
	storage in geological formations ${\sf OR}$ under the sea-bed \checkmark		ALLOW piped into disused or partially filled oil wells
	by reaction (with metal oxides) to form carbonates \checkmark		ALLOW stored as a carbonate OR equation to show formation of suitable carbonate from an oxide IGNORE mineral storage
			IGNORE reforestation
	Total	13	

Q	uest	ion	Expected Answers	Marks	Additional Guidance
2	(a)	(i)	The enthalpy change for the complete combustion ✓	2	ALLOW energy change for combustion in excess oxygen OR energy released during complete combustion OR energy change for combustion in excess air NOT energy required
			of 1 mol (of a substance) ✓		This mark is not stand alone but must relate to statement about an enthalpy change even if the statement was not awarded a mark
	(b)	(i)	56.430 (kJ) ✓	1	ALLOW 56.43 (kJ) OR 56.4 kJ ✓ OR 56 kJ ALLOW -56.43 i.e. ignore sign
		(ii)	$M_{\rm r} [{\rm CH}_3({\rm CH}_2)_4 {\rm OH}] = 88.0 \checkmark$	2	ALLOW 88
			$n = 0.0200 \text{ mol } \checkmark$		ALLOW 0.02 OR ecf from wrong <i>M</i> _r ALLOW full marks for 0.02 with no working out
		(iii)	(−)2821.5 ✓	3	ALLOW correct substitution into formula(b)(i) \div (b)(ii) e.g. 56.4 \div 0.02 this is essentially a mark for the working
			= (−)2820 (3 SF) ✓		
			correct minus sign ✓		ALLOW ecf from i.e. answer from (b)(i) ÷ (b)(ii)
					The minus mark is stand alone and is independent of the numerical answer
	(c)	(i)		1	units needed
			pressure: 100 kPa OR 101 kPa AND		ALLOW 1 bar OR 1 atm OR 760 mmHg
			temperature: 298 K OR 25 °C ✓		ALLOW any stated temperature so for example 100kPa and 40°C would be credited with a mark
					IGNORE any reference to moles or concentration
		(ii)	$6C(s) + 7H_2(g) \rightarrow C_6H_{14}(I) \checkmark$	1	ALLOW graphite / gr
		(iii)	many different hydrocarbons would form OR activation energy too high OR reaction too slow	1	ALLOW can form different isomers OR can form different structures
			OR they don't react together ✓		IGNORE reaction may be reversible

Mark S	Scheme
--------	--------

Question	Expected Answers	Marks	Additional Guidance	
(iv)	6 × −394 + 7 × −286 shown OR calculated as −4366 \checkmark	3	ALLOW THREE marks for –203 on its own with no working out or written on the answer line	
	-4366 and -4163 added OR subtracted ✓		, , , , , , , , , , , , , , , , , , ,	
			ALLOW TWO marks for +203,+3483, +1513, +1767 or	
	correct answer –4366 – (–4163) = –203 ✓		-8529 on its own with no working out	
			ALLOW ONE mark for or -3483, -1513, -1767 or	
			+8529 on its own with no working out	
			units NOT needed	
			Positive sign not needed for endothermic answers	
	Total	14		

CH₃

Br

∺ Br⊖

F322

H

CH₃

Br $\delta +$

\ Br δ–

Quest	ion	Expected Answers	Marks	Rationale
(c)	(i)	C ₆ H ₁₀ ✓	1	
	(ii)	$M_{\rm r}({\rm cyclohexanol}) = 100 \checkmark$	3	ALLOW full marks for correct answer with no or limited working out
		amount of cyclohexanol = 0.0765 mol \checkmark		ALLOW ecf from wrong molar mass i.e. 7.65 ÷ molar mass
		percentage yield = 35.0% ✓		ALLOW ecf from wrong amount in moles i.e. [0.0268 ÷ moles] × 100 ALLOW 35%
				ALLOW two marks for 0.35%
				If $M_{\rm r}$ of 82 is used then % yield will be 28.7 or 29 and this is worth two marks
(d)	(i)	(sum of) the molecular masses of the desired product ÷ sum of molecular masses of all products × 100 ✓	1	ALLOW (sum of) the molecular masses of the desired product ÷ sum of molecular masses of all reactants × 100 ✓
	(ii)	this preparation is addition OR has 100% atom economy OR there is only one product \checkmark	2	ALLOW no by products formed
		preparation from cyclohexanol has less than 100% atom economy OR H ₂ O is produced as well OR calculated atom economy = 82% \checkmark		ALLOW other substances formed OR cyclohexene is not the only product
		Total	15	

June	2009
------	------

Question		on	Expected Answers		Additional Guidance
4	(a)		high pressure as fewer moles (of gas) on right-hand side OR high pressure as volume of products less than that of reactants \checkmark	2	ALLOW ora ALLOW fewer particles OR fewer molecules
			low temperature as (forward) reaction is exothermic \checkmark		ALLOW ora
	(b)		Too expensive to use a high pressure \checkmark	2	ALLOW high pressures provide a safety risk OR high pressure is too dangerous
			Too slow to use a low temperature \checkmark		ALLOW with low temperature molecules cannot overcome activation barrier
	(c)	(i)	$CI + O_3 \rightarrow CIO + O_2 \checkmark$ $CIO + O \rightarrow CI + O_2 \checkmark$ $overall: O_3 + O \rightarrow 2O_2 \checkmark$	3	Marks must come from one or other of the radical process and not from both of them. If two processes are described then an incorrect step in one process will contradict a correct step in the other process. ALLOW overall equation mark even if the steps are wrong the radicals do NOT need a single dot IGNORE any state symbols ALLOW $CI + O_3 \rightarrow CIO + O_2 \checkmark$ $CIO + O_3 \rightarrow CI + 2O_2 \checkmark$ overall: $2O_3 \rightarrow 3O_2 \checkmark$
			OR $CI + CH_4 \rightarrow CH_3 + HCI \checkmark$ $CH_3 + CI_2 \rightarrow CH_3CI + CI \checkmark$ overall: $CH_4 + CI_2 \rightarrow CH_3CI + HCI \checkmark$		ALLOW any saturated hydrocarbon including cyclic ALLOW ecf for second step and overall reaction if wrong hydrocarbon used e.g. C_2H_4 is used in first step

Additional Guidance

Marks

Expected Answers

F322

Question

Total

uestion	Expected Answers	warks	Additional Guidance
(ii)		3	NOT double headed arrows but apply ecf for more than one double headed arrow
	ΔH shown and products below reactants \checkmark		
	$E_{\rm a}$ shown \checkmark		ALLOW one mark if two correctly labelled curves are
	$E_{\rm c}$ shown < $E_{\rm a}$ \checkmark		drawn but the arrows are not shown or are incorrectly drawn
	cuthalpy roactants		The arrows must be positioned as closely as possible to the maximum height of the curves but allow some degree of bod
	progress of reaction		
(d)	Any FOUR from: catalyst not used up in reaction ✓	4	
	reactions take place at lower temperatures \checkmark with lower energy demand OR lower activation energy OR use less fuel \checkmark so less carbon dioxide emitted into atmosphere OR so fossil fuels last longer \checkmark		ALLOW catalysts can work at room temperature OR enzymes work at room temperature IGNORE cheaper
	different reactions can be used \checkmark with better atom economy OR less waste \checkmark less hazardous chemicals \checkmark		
	catalysts or enzymes can generate specific products ✓		

14

F322

Quest	tion	Expected Answers	Marks	Additional Guidance
5 (a)		method 1: fermentation of sugars or carbohydrates OR reaction with yeast with sugar or carbohydrates \checkmark $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 \checkmark$ method 2: hydration of ethene OR reaction of ethene with water OR reaction of steam with ethene \checkmark $C_2H_4 + H_2O \rightarrow C_2H_5OH \checkmark$	4	ALLOW sugar from equation ALLOW C ₂ H ₆ O in equation ALLOW correct multiples IGNORE state symbols ALLOW ethene from the equation IGNORE mention of any catalyst ALLOW C ₂ H ₆ O in equation OR H ₂ O over the arrow ALLOW correct multiples IGNORE state symbols
(b)	(i)	$(CH_3)_2CO \text{ OR } H_3C \longrightarrow O \\ H_3C \longrightarrow (CH_3)_2CHOH + [O] \longrightarrow (CH_3)_2CO + H_2O \checkmark$	2	If name and formula given both need to be correct ALLOW propanone OR acetone IGNORE propone NOT incorrect named compound ALLOW $C_3H_8O + [O] \rightarrow C_3H_6O + H_2O$
				ALLOW O instead of [O] ALLOW correct multiples IGNORE state symbols
	(ii)	CH ₃ CH ₂ COOH OR propanoic acid \checkmark Any number or range of numbers between 1750–1640 (cm ⁻¹) for C=O \checkmark Any number or range of numbers between 2500–3300 (cm ⁻¹) for O–H \checkmark	3	ALLOW C=O and O—H marks independent of compound identified i.e. stand alone marks ALLOW correct bonds shown by the appropriate absorption on the IR spectrum IGNORE reference to C—O bond
(c)	(i)	2-methylpropan-2-ol ✓	1	ALLOW methylpropan-2-ol OR tertiarybutanol

F322		Mark Scheme		
Question	Expected Answers	Marks	Additional Guidance	
(ii)	ester ✓	1		
(iii)	CH ₃ CO ₂ C(CH ₃) ₃ OR CH ₃ COOC(CH ₃) ₃	2	ALLOW skeletal formula OR displayed formula	
	OR H ₃ CC OC(CH ₃) ₃			
	ester group shown ✓		ALLOW ester linkage even if rest of structure is wrong	
	rest of molecule ✓			
	Total	13		

1

2

н

less easily

ALLOW ora e.g. C—Br bonds are stronger OR broken

Question	n	Expected Answers	Marks	Additional Guidance
6 (a) ((i)	$C_{2}H_{5} \xrightarrow{\qquad C_{2}H_{5}} C_{2}H_{5} \xrightarrow{\qquad H} C_{2} \xrightarrow$	3	no need to show any lone pairs on oxygen but must have a clear negative sign rather than partial negative charge IGNORE lone pairs IGNORE products of this reaction
		C–I curly arrow from the bond not from carbon atom ✓ curly arrow from the OH ⁻ ✓ correct partial charges on C––I ✓		ALLOW curly arrow from a negative charge or from any part of hydroxide ion If S _N 1 mechanism is given then use the mark scheme below correct partial charges on C—I \checkmark C-I curly arrow from the bond not from carbon atom \checkmark curly arrow from the OH ⁻ to the correct carbocation \checkmark $C_2H_5 \longrightarrow \stackrel{H}{\underset{H}{}} \stackrel{\Phi^+}{\underset{H}{}} \stackrel{\Phi^-}{\underset{H}{}} \stackrel{\Phi^-}{\underset{H}{} \stackrel{\Phi^-}{\underset{H}{}} \stackrel{\Phi^-}{\underset{H}{} \stackrel{\Phi^-}{\underset{H}} \stackrel{\Phi^-}{\underset{H}{$

(ii) nucleophilic substitution ✓

bonds are longer ✓

(b)

C–I bonds broken more easily ✓

C-I bonds are weaker OR have less bond enthalpy OR C-I

June 2009

PMT

Question	Expected Answers	Marks	Additional Guidance
(c)	 Any TWO from: CFCs take many years to reach the ozone layer OR long residence time ✓ CFCs are still being used ✓ there are other ozone depleting substances ✓ 	2	IGNORE because chlorine radicals stay in the stratosphere ALLOW other named ozone depleting substances e.g.
(d) (i)	$\begin{array}{c c} H & H & H & H \\ \hline H & H & H & H \\ \hline - C & C & C & C \\ \hline H & F & H & F & \checkmark \end{array}$	1	NO and HFCs Free bonds at bond ends must be present ALLOW minor slip e.g. missing one hydrogen and left at a stick ALLOW more than two repeat units but must be a whole number of repeat units
(ii)	$ \begin{array}{c} H \\ \downarrow \\ H \\ H \\ \end{array} \\ F \\ \checkmark $	1	IGNORE brackets, use of numbers and n in the drawn structure ALLOW skeletal formula ALLOW CH ₂ CHF
(e)	Any two from: separation into types and recycling OR sort plastics, melt and remould ✓ combustion for energy generation ✓	2	IGNORE biodegradable used as a fuel is insufficient releases energy is insufficient ALLOW burning plastics to release energy
	used for cracking OR feedstock for plastics or chemicals \checkmark		ALLOW organic feedstock / raw materials to make organic compounds
	Total	12	

Mark Scheme

PMT

Question	Expected Answers	Marks	Additional Guidance
Question 7 (a)	Expected Answers Structural isomer compounds with the same molecular formula ✓ but with different structural formulae ✓ Stereoisomer compounds with the same structural formula ✓ but with different arrangements in space ✓	Marks 11	Additional Guidance ALLOW same molecular formula ✓ but different structures✓ Second marking point is DEPENDENT on first mark ALLOW compounds with the same structure Second marking point is DEPENDENT on first mark This is the QWC mark
	Evidence of using M _r of 70 to calculate molecular formula of $C_5H_{10} \checkmark$ F and G are \checkmark Correct identification of the <i>E</i> and <i>Z</i> isomers \checkmark H is <i>E/Z</i> happens because double bonds restricts rotation \checkmark		IGNORE wrong names of F, G and H ALLOW structural or displayed formulae for F, G and H e.g. H is CH ₃ CH ₂ CH ₂ CH ₂ CHCH ₂ ALLOW identification using <i>trans</i> and <i>cis</i> and ALLOW this marking point as identification of another example of identifying <i>E/Z</i> or <i>cis</i> and <i>trans</i> if not done for F and G ALLOW one mark if no structures drawn but correct names given for F, G and H i.e <i>E</i> -pent-2-ene, <i>Z</i> -pent-2- ene and pent-1-ene ALLOW ecf on structures if wrong molecular formula used or consistent error or slip such as having just sticks
	different groups on each carbon of the double bond \checkmark		

F322	Mark Scher	ne	June 2009
Question	Expected Answers	Marks	Additional Guidance
(b)	from IR absorption, J contains O–H OR from IR J is an alcohol \checkmark C : H : O = $\frac{70.59}{12.0}$: $\frac{13.72}{1.0}$: $\frac{15.69}{16.0}$ OR 5.8825 : 13.72 : 0.9806 \checkmark	8	This is a QWC mark
	empirical formula = $C_6H_{14}O \checkmark$ (from mass spectrum), $M_r = 102 \checkmark$		ALLOW two marks for correct empirical formula with no working out
	evidence that it has been shown that the empirical formula is the molecular formulae e.g. M_r of C ₆ H ₁₄ O = 102 so empirical formula is molecular formula \checkmark		This is a QWC mark
			ALLOW structural or displayed formulae IGNORE incorrect names
	ОН		ALLOW one minor slip in drawing structures e.g. one missing hydrogen but ALLOW ecf for bigger slips such as showing just sticks and no hydrogen atoms ALLOW bond to H in OH
	OH		ALLOW one mark for three isomers of $C_6H_{13}OH$ whether branched or unbranched as a catch mark if no other mark has been awarded for the structures
	One mark for each correct structure $\checkmark \checkmark \checkmark$		 If more than three isomers of C₆H₁₃OH drawn 1 branched and 3 unbranched award two marks any other combination award one mark
			ALLOW one mark for hexan-1-ol, hexan-2-ol and hexan- 3-ol if structures not drawn
	Total	19	

Grade Thresholds

Advanced GCE (Chemistry A) (H034 H434) June 2009 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	е	u
F321	Raw	60	50	43	37	31	25	0
	UMS	90	72	63	54	45	36	0
F322	Raw	100	75	65	55	46	37	0
	UMS	150	120	105	90	75	60	0
F323	Raw	40	34	31	28	25	22	0
	UMS	60	48	42	36	30	24	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	В	С	D	E	U
H034	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
H034	17.6	35.1	52.8	68.8	82.2	100.0	16327

16327 candidates aggregated this series

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

PMT